Abnormal megakaryocyte development and platelet function in Nbeal2(-/-) mice.

نویسندگان

  • Walter H A Kahr
  • Richard W Lo
  • Ling Li
  • Fred G Pluthero
  • Hilary Christensen
  • Ran Ni
  • Nima Vaezzadeh
  • Cynthia E Hawkins
  • Andrew S Weyrich
  • Jorge Di Paola
  • Carolina Landolt-Marticorena
  • Peter L Gross
چکیده

Gray platelet syndrome (GPS) is an inherited bleeding disorder associated with macrothrombocytopenia and α-granule-deficient platelets. GPS has been linked to loss of function mutations in NEABL2 (neurobeachin-like 2), and we describe here a murine GPS model, the Nbeal2(-/-) mouse. As in GPS, Nbeal2(-/-) mice exhibit splenomegaly, macrothrombocytopenia, and a deficiency of platelet α-granules and their cargo, including von Willebrand factor (VWF), thrombospondin-1, and platelet factor 4. The platelet α-granule membrane protein P-selectin is expressed at 48% of wild-type levels and externalized upon platelet activation. The presence of P-selectin and normal levels of VPS33B and VPS16B in Nbeal2(-/-) platelets suggests that NBEAL2 acts independently of VPS33B/VPS16B at a later stage of α-granule biogenesis. Impaired Nbeal2(-/-) platelet function was shown by flow cytometry, platelet aggregometry, bleeding assays, and intravital imaging of laser-induced arterial thrombus formation. Microscopic analysis detected marked abnormalities in Nbeal2(-/-) bone marrow megakaryocytes, which when cultured showed delayed maturation, decreased survival, decreased ploidy, and developmental abnormalities, including abnormal extracellular distribution of VWF. Our results confirm that α-granule secretion plays a significant role in platelet function, and they also indicate that abnormal α-granule formation in Nbeal2(-/-) mice has deleterious effects on megakaryocyte survival, development, and platelet production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abnormal megakaryocyte development and platelet function in Nbeal2 mice Running title: Mouse model of gray platelet syndrome

Gray platelet syndrome (GPS) is an inherited bleeding disorder associated with macrothrombocytopenia and α-granule-deficient platelets. GPS has been linked to loss of function mutations in NBEAL2 (neurobeachin-like 2), and we describe here a murine GPS model, the Nbeal2 mouse. As in GPS, Nbeal2 mice exhibit splenomegaly, macrothrombocytopenia and a deficiency of platelet α-granules and their ca...

متن کامل

The Nbeal2−/− mouse as a model for the gray platelet syndrome

The gray platelet syndrome (GPS) is a rare, autosomal-recessive platelet disorder characterized by thrombocytopenia, large platelets lacking α-granules, and variable bleeding. GPS has been linked to mutations in the neurobeachin-like 2 gene (NBEAL2). We have recently characterized Nbeal2-deficient mice and shown that the absence of Nbeal2 results in defective protein sorting in megakaryocytes (...

متن کامل

Abnormal proplatelet formation and emperipolesis in cultured human megakaryocytes from gray platelet syndrome patients

The Gray Platelet Syndrome (GPS) is a rare inherited bleeding disorder characterized by deficiency of platelet α-granules, macrothrombocytopenia and marrow fibrosis. The autosomal recessive form of GPS is linked to loss of function mutations in NBEAL2, which is predicted to regulate granule trafficking in megakaryocytes, the platelet progenitors. We report the first analysis of cultured megakar...

متن کامل

NBEAL2 is required for neutrophil and NK cell function and pathogen defense

Mutations in the human NBEAL2 gene cause gray platelet syndrome (GPS), a bleeding diathesis characterized by a lack of α granules in platelets. The functions of the NBEAL2 protein have not been explored outside platelet biology, but there are reports of increased frequency of infection and abnormal neutrophil morphology in patients with GPS. We therefore investigated the role of NBEAL2 in immun...

متن کامل

Serum response factor is an essential transcription factor in megakaryocytic maturation.

Serum response factor (Srf) is a MADS-box transcription factor that is critical for muscle differentiation. Its function in hematopoiesis has not yet been revealed. Mkl1, a cofactor of Srf, is part of the t(1;22) translocation in acute megakaryoblastic leukemia, and plays a critical role in megakaryopoiesis. To test the role of Srf in megakaryocyte development, we crossed Pf4-Cre mice, which ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 122 19  شماره 

صفحات  -

تاریخ انتشار 2013